Células-tronco pluripotentes induzidas e edição de genes: avanços tecnológicos da pesquisa em medicina regenerativa e terapia gênica

Cristiane Batista Bezerra Torres, Wagner Soares Pessoa

Resumo


A reprogramação gênica de células diferenciadas permitiu a obtenção de células-tronco pluripotentes induzidas (induced pluripotent stem cells  – iPSCs) que não apresentam os questionamentos éticos que envolvem as células-tronco embrionárias e nem o risco de rejeição imunológica. A tecnologia do Conjunto de Repetições Palindrômicas Regularmente Espaçadas com Nuclease Associada 9 (CRISPR-Cas9), permite a correção de defeitos genéticos. O presente estudo tem por objetivo revisar as principais questões metodológicas relacionadas às iPSCs e o CRISPR-Cas 9. Realizou-se uma busca eletrônica nas bases de dados LILACS, MEDLINE, PubMed e SciELO, por meio das expressões “induced pluripotent stem cells ” e “CRISPR Cas9”. As iPSCs podem ser expandidas em cultura e diferenciadas em qualquer célula do corpo, consistindo em um modelo útil para a edição de genes com o CRISPR-Cas9, abrindo novas perspectivas na pesquisa em medicina regenerativa e terapia gênica.

Palavras-chave


células-tronco pluripotentes induzidas, proteínas associadas a CRISPR, edição de genes.

Texto completo:

PDF

Referências


BAGHBADERANI, A. B.; TIAN, X.; NEO, B. H.; BURKALL, A.; DIMEZZO, T.; SIERRA, G. et al. cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cells Reports, v. 5, Oct. 15, p. 647-59, 2015.

CAMPBELL, K. H.; McWHIR, J.; RITCHIE, W. A.; WILMUT, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature, v. 380, n. 6569, p. 64–6, 1996.

CONG, L.; RAN, F. A.; COX, D.; LIN, S.; BARRETTO, R. et al. Multiplex genome editing engineering using CRISPR/Cas systems. Science, v. 339, n. 6121, p. 819-23, 2013.

FIRFH, A. L.; MENON, T.; PARKER, G. S.; QUALLS, S. J.; LEWIS, B. M.; KE, E. et al. Functional gene correction for cystic fibrosis in lung epitelial cells generated from patient iPSCs. Cell Reports, v. 12, n. 9, p: 1385-90, 2015.

GUIMARÃES, M. Uma ferramenta para editar o DNA. Pesquisa Fapesp, v. 240, p. 38-41, 2016.

GURDON, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, v. 10, p. 622-40, 1962.

HIRSCHI, K. K.; LI, S.; ROY, K. Induced pluripotent stem cells for regenerative medicine. Annual Review of Biomedical Engineering, v. 16, Jul. 11, p. 277-94, 2014.

HOCHEMEYER, D.; JAENISCH, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell, May 5, v. 18, n. 5, p. 573-586, 2016.

JIMÉNEZ-MORENO, N.; STATHAKOS, P.; CALDWELL, M. A.; LANE, J. D. Induced pluripotent stem cell neuronal models for the study of authophagy pathway in human degenerative disease. Cells, v. 6, n. 3, Aug. 11, 2017.

JINEK, M.; CHYLINSKI, K.; FONFARA, I.; HAUER, M.; DOUDNA, J. A.; CHARPENTIER, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, v. 337, n. 6096, p. 816-21, 2012.

KHAZAEI, M.; AHUJA, C. S.; FEHLINGS, M. G. Generation of oligodendrogenic spinal neural progenitor cells from human induced pluripotent stem cells. Current Protocols in Stem Cell Biology, Aug. 14, 2017, ISSN:1938-8969.

KIM, D; KIM, C. H.; MOON, J. I.; CHUNG, Y. G.; CHANG, M. Y; HAN, B. S. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, v. 4, n. 6, p. 472–476, 2009.

KUO, C. H.; DENG, J. H.; DENG, Q.; YING, S. Y. A novel role of miR-302/367 in reprogramming. Biochemistry and Biophysical Research Community, v. 417, n. 1, p. 417-411, 2012.

LIANG, P.; XU, Y.; ZHANG, X.; DING, C.; HUANG, R. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell., v. 6, n. 5, p. 363–72, 2015.

LISTIK, E.; CARMO, A. C. V. As características dos mecanismos e sistemas de edição genômica. Revista Acadêmica Oswaldo Cruz, 10. ed., ano 3, n. 10, abr.-jun., 2016. Disponível em: revista.oswaldocruz.br/Content/pdf/Edicao_10_Listik_Eduardo.pdf. Acesso em: 06/09/17.

LONG, C; McANALLY, J. R.; SHELTON, J. M.; MIREAULT, A. A.; BASSEL-DUBY, R.; OLSON, E. N. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing germline DNA. Science, v. 345, n. 6201, p. 1184-88, 2014.

MALI, P.; YANG, L.; ESVELT, K. M.; AACH, J.; GUELL, M.; DICARLO, J. E. et al. RNA-guided human genome engineering via Cas9. Science, v. 339, n. 6121, p. 823-6, 2013.

OKANO, H.; NAKAMURA, M.; YOSHIDA, K.; OKADA, Y.; TSUJI, O.; NORI, S. et al. Step toward safe cell therapy using induced pluripotent stem cells. Circulation Research, Feb. 1, v. 112, n. 3, p. 523-533, 2013.

OKITA, K.; YAMAKAWA, T.; MATSUMURA, Y.; SATO, Y.; AMANO, N.; WATANABE, A. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, v. 31, 458-466, 2013.

SAVIĆ, N.; SCHWANK, G. Advances in therapeutic CRISPR-Cas9 genome editing. Translational Research, v. 168, Feb., 15-21, 2016.

SULLIVAN, G. J.; HAY, D. C.; PARK, I. H.; FLETCHER, J.; HANNOUN, Z.; PAYNE, C. M. et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, v. 51, n. 1, p. 329-35, 2010.

TAKAHASHI, K.; TANABE, K.; OHNUKI, M.; NARITA, M.; NARITA, M.; ICHISAKA, T; TOMODA, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, v. 131, n. 5, p.861-722, 2007.

TAKAHASHI, K.; YAMANAKA, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, v. 126, n. 4, p. 663–676, 2006.

TAKAHASHI, K.; YAMANAKA, S. Induced pluripotent stem cells in medicine and biology. Development, v. 140, n. 12, p. 2457-2461, 2013.

WADDINGTON, S. N.; PRIVOLIZZI, R.; KARDA, R.; O’NEILL, H. C. A broad overview and review of CRISPR-Cas technology and stem cells. Current Stem Cell Report, v. 2, p. 9-20, 2016.

WARREN, L.; MANOS, P. D.; AHFELDT, T.; LOH, Y. H.; LI, H., LAU, F. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, v. 7, n. 5, p. 618-30, 2010.

WU, Y.; LIANG, D.; WANG, Y.; BAI, M.; TANG, W.; BAO, S. et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, v. 13, n. 6, p. 659-62, 2013.

XAVIER-NETO, J.; SAITO, A. Geração de camundongo nocaute condicional para o receptor nuclear órgão COUP-TFII por CRISPR/Cas9. Campinas: Laboratório Nacional de Pesquisas em Energia e Materiais, 2016, 14p. (Projeto para solicitação de bolsa PIBIC/CNPEM).

XIAO-JIE, L.; HUI-YING, X.; ZUN-PING, K.; JIN-LIAN, C. et al. CRISPR-Cas9: a new and promising player in gene therapy. Journal of Medical Genetics, v. 52, n. 5, p. 289-96, 2015.

XIE, F.; YE, L.; CHANG, J. C.; BEYER, A.I.; WANG, J.; MUENCH, M. O. et al. Seamless gene correction of β-thalassemy mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Research, v. 24, n. 9, p. 1526-33, 2014.

YIN, H.; XUE, W.; CHEN, S.; BOGORAD, R. L.; BENEDETTI, E.; GROMPE, M. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, v. 3, n. 6, p. 551-3, 2014.

YU, J.; VODYANIK, M. A.; SMUGA-OTTO, K.; ANTOSIEWICZ-BOURGET, J.; FRANE, J. L.; TIAN, S. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, v. 318, (5858), p. 1917–1920, 2007.




DOI: https://doi.org/10.26694/jibi.v3i1.6258

Apontamentos

  • Não há apontamentos.




ISSN: 2448-0002

 

Qualis CAPES - QUADRIÊNIO 2013-2016

Área de avaliação (Qualis Capes)

Classificação

Interdisciplinar

B4

Medicina Veterinária

B4

Odontologia

B4

Indexado em:

 


Apoio