Antimicrobial activity and cytotoxic assessment of gallic and ellagic acids

Michel Mualem de Moraes Alves, Lucas Moreira Brito, Adriana Cunha Souza, Thaynara Parente de Carvalho, Felipe José Costa Viana, Felipe Araújo de Alcântara Oliveira, Humberto Medeiros Barreto, Jéssica Sara de Sousa Macêdo Oliveira, Mariana Helena Chaves, Daniel Dias Rufino Arcanjo, Fernando Aécio de Amorim Carvalho

Resumo


Os objetivos deste estudo foram investigar a atividade antimicrobiana do ácido gálico (AG) e ácido elágico (AE) contra estirpes de bactérias, Candida albicans e Leishmania amazonensis, bem como avaliar sua citotoxicidade em macrófagos peritoneais murinos. As concentrações mínimas de inibição (CMI) de ácidos gálico e elágico foram determinadas pelo ensaio de microdiluição. As CMIs da norfloxacina contra uma estirpe de Staphylococcus aureus com sobre-expressão de NorA foram determinadas na ausência ou presença de cada composto em concentrações sub-inibitórias, a fim de verificar a capacidade destes compostos como potenciais inibidores da bomba de efluxo. O ácido gálico foi inativo contra todas as cepas testadas, enquanto isso o ácido elágico mostrou atividade contra S. aureus e C. albicans. Por outro lado, ambos os compostos não conseguiram modular a resistência à fluoroquinolona, indicando que não são inibidores de NorA. Além disso, eles foram ativos contra L. amazonensis, com valores de IC50 de 10,94 e 3,64 μg ∙ mL-1 para AG e AE, respectivamente. Eles também mostraram citotoxicidade em macrófagos peritoneais murinos com valores de CC50 de 126,5 e 23,811 μg ∙ mL-1 para AG e AE, respectivamente. Curiosamente, ambos os compostos mostraram ser mais seletivos para parasitas que para macrófagos. Estes resultados demonstraram que os ácidos gálico e elágico representam uma alternativa potencial para a terapia de infecções por estafilococos, micoses e leishmaniose.


Palavras-chave


Candida, Leishmania, Macrophage, Staphylococcus, Tannins

Texto completo:

PDF (English)

Referências


AGGARWAL, B. B.; SHISHODIA, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol, v. 71, n. 10, p. 1397-421, May 14 2006.

ALIZADEH, B. H. et al. Leishmanicidal evaluation of novel synthetic chromenes. Arch Pharm (Weinheim), v. 341, n. 12, p. 787-93, Dec 2008.

ASHFORD, R. W. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol, v. 30, n. 12-13, p. 1269-81, Nov 2000.

BONDARYK, M.; KURZATKOWSKI, W.; STANISZEWSKA, M. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Postepy Dermatol Alergol, v. 30, n. 5, p. 293-301, Oct 2013.

CARNEIRO, S. M. et al. The cytotoxic and antileishmanial activity of extracts and fractions of leaves and fruits of Azadirachta indica (A Juss.). Biol Res, v. 45, n. 2, p. 111-6, 2012.

CORTAZAR, T. M.; COOMBS, G. H.; WALKER, J. Leishmania panamensis: comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavonoids and pentamidine. Exp Parasitol, v. 116, n. 4, p. 475-82, Aug 2007.

DE JESUS, N. Z. et al. Tannins, peptic ulcers and related mechanisms. Int J Mol Sci, v. 13, n. 3, p. 3203-28, 2012.

DE MEDEIROS, M. et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol Int, v. 60, n. 3, p. 237-41, Sep 2011.

DEVIPRIYA, N. et al. Effect of ellagic acid, a natural polyphenol, on alcohol-induced prooxidant and antioxidant imbalance: a drug dose dependent study. Singapore Med J, v. 48, n. 4, p. 311-8, Apr 2007.

FEKKAR, A. et al. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob Agents Chemother, v. 57, n. 5, p. 2380-2, May 2013.

GONÇALVES, J. C. R. et al. Antitumoral activity of novel 1,4-naphthoquinone derivative involves L-type calcium channel activation in human colorectal cancer cell line. Journal of Applied Biomedicine, v. 14, n. 3, p. 229-234, 2016.

IINO, T. et al. Less damaging effect of whisky in rat stomachs in comparison with pure ethanol. Role of ellagic acid, the nonalcoholic component. Digestion, v. 64, n. 4, p. 214-21, 2001.

KAATZ, G. W.; SEO, S. M. Inducible NorA-mediated multidrug resistance in Staphylococcus aureus. Antimicrob Agents Chemother, v. 39, n. 12, p. 2650-5, Dec 1995.

KAMHAWI, S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol, v. 22, n. 9, p. 439-45, Sep 2006.

LAXMINARAYAN, R. Antibiotic effectiveness: balancing conservation against innovation. Science, v. 345, n. 6202, p. 1299-301, Sep 12 2014.

LEE, W. L.; HARRISON, R. E.; GRINSTEIN, S. Phagocytosis by neutrophils. Microbes Infect, v. 5, n. 14, p. 1299-306, Nov 2003.

LIMA, V. N. et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb Pathog, v. 99, p. 56-61, Oct 2016.

LOPEZ-CAMACHO, E. et al. Genomic analysis of the emergence and evolution of multidrug resistance during a Klebsiella pneumoniae outbreak including carbapenem and colistin resistance. J Antimicrob Chemother, v. 69, n. 3, p. 632-6, Mar 2014.

LU, Y. et al. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur J Pharmacol, v. 641, n. 2-3, p. 102-7, Sep 1 2010.

MARCHESE, A. et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem, v. 210, p. 402-14, Nov 01 2016.

MITROPOULOS, P.; KONIDAS, P.; DURKIN-KONIDAS, M. New World cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J Am Acad Dermatol, v. 63, n. 2, p. 309-22, Aug 2010.

MURAKAMI, S. et al. Inhibition of gastric H+, K(+)-ATPase and acid secretion by ellagic acid. Planta Med, v. 57, n. 4, p. 305-8, Aug 1991.

OGUNGBE, I. V.; ERWIN, W. R.; SETZER, W. N. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J Mol Graph Model, v. 48, p. 105-17, Mar 2014.

PAOLINI, A. et al. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol, v. 46, n. 4, p. 1491-7, Apr 2015.

PAPOUTSI, Z. et al. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr, v. 99, n. 4, p. 715-22, Apr 2008.

RIBEIRO, T. G. et al. Antileishmanial activity of standardized fractions of Stryphnodendron obovatum (Barbatimao) extract and constituent compounds. J Ethnopharmacol, v. 165, p. 238-42, May 13 2015.

RODRIGUES, K. A. et al. Eugenia uniflora L. Essential Oil as a Potential Anti-Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action. Evid Based Complement Alternat Med, v. 2013, p. 279726, 2013.

RODRIGUES, K. A. et al. Syzygium cumini (L.) Skeels essential oil and its major constituent alpha-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J Ethnopharmacol, v. 160, p. 32-40, Feb 3 2015.

SHUAIBU, M. N. et al. Castalagin from Anogeissus leiocarpus mediates the killing of Leishmania in vitro. Parasitol Res, v. 103, n. 6, p. 1333-8, Nov 2008.

STROMMENGER, B. et al. Evolution of methicillin-resistant Staphylococcus aureus towards increasing resistance. J Antimicrob Chemother, v. 69, n. 3, p. 616-22, Mar 2014.

TINTINO, S. R. et al. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb Pathog, v. 97, p. 9-13, Aug 2016.

VALADARES, D. G. et al. Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Parasitol Int, v. 60, n. 4, p. 357-63, Dec 2011.

VATTEM, D. A.; GHAEDIAN, R.; SHETTY, K. Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pac J Clin Nutr, v. 14, n. 2, p. 120-30, 2005.

YANG, Y. H. et al. Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol Med Rep, v. 12, n. 2, p. 3017-24, Aug 2015.

YUCE, A. et al. Ellagic acid prevents cisplatin-induced oxidative stress in liver and heart tissue of rats. Basic Clin Pharmacol Toxicol, v. 101, n. 5, p. 345-9, Nov 2007.




DOI: https://doi.org/10.26694/jibi.v3i1.6626

Apontamentos

  • Não há apontamentos.




ISSN: 2448-0002

 

Qualis CAPES - QUADRIÊNIO 2013-2016

Área de avaliação (Qualis Capes)

Classificação

Interdisciplinar

B4

Medicina Veterinária

B4

Odontologia

B4

Indexado em:

 


Apoio